Роль интуиции и неявного знания

Роль, интуиции, неявного, знания

Дадим здесь краткую характеристику аналитического и интуитивного математического мышления. Говорят, что математик обладает интуитивным стилем мышления, когда работая долго над проблемой, он неожиданно получает решение, которое он еще формально не обосновал. Также интуитивисту присуща способность быстро делать очень удачные предположения о том, какой из подходов к решению задачи окажется наиболее эффективным. В противоположность аналитическому интуитивное мышление характеризуется тем, что в нем отсутствуют четко определенные этапы. Оно основано на свернутом восприятии всей проблемы сразу. Человек получает ответ, который может быть правильным или неправильным, мало осознавая при этом процесс, посредством которого он получил правильный ответ. Обычно интуитивное мышление осуществляется в виде скачков, быстрых переходов, с пропусками отдельных звеньев в процессе решения. Эти особенности требуют проверки выводов аналитическими средствами.

Аналитическое мышление позволяет отчетливо выразить отдельные этапы в процессе решения задачи и кому-либо рассказать о них. Оно может принимать форму отточенного дедуктивного рассуждения, в котором используется логика и которое имеет четкий план. Интуитивное и аналитическое мышление дополняют друг друга.

Разница в стилях мышления интуитивистов и аналитиков очевидна, хотя и те, и другие выдающиеся ученые- математики. Тем не менее, совершенно определенно А Пуанкаре утверждает, что не только интуитивистами, но и логиками управляет интуиция - некоторая особая чисто математическая интуиция чистого числа. Она помогает увидеть скрытые аналогии, что в математике играет зачастую решающую роль, и затем уже продуктивно воспользоваться аксиомой математической индукции. Поэтому, как считает А Пуанкаре, аналитики искусные мастера силлогизма. Интуиция чистого числа, им свойственная, не является чувственной, и поэтому аналитики почти не ошибаются. Но именно такой стиль математического мышления по-настоящему уникален. Аналитики-творцы очень редки. Так оценивает роль интуиции в формировании стиля математического мышления А. Пуанкаре [5].

Здесь возникает законный вопрос - насколько далеки друг от друга эти два вида интуиции? И правомерно ли вообще аналитикам прописывать какую-либо интуицию? Ясно одно - в действиях аналитиков мы видим не одну только логику. Ведь прежде, чем мы сможем применить аксиому математической индукции, необходимо "увидеть" некоторую скрытую аналогию. А при этом выход за рамки тавтологии и дискурсии неизбежен.

А. Пуанкаре оставляет открытым этот вопрос, настаивая лишь на незаменимости термина "интуиция". Другой исследователь научного творчества, М Полани, считает, что в любом случае, в том числе и для аналитиков, необходимо преодоление логического разрыва, а значит, и необходимо присутствие интуитивных элементов [4]. Этот свой вывод М Полани обосновывает построением аналогии между так называемой геделевской процедурой и правилами открытия, выработанными А. Пуанкаре. Геделевская процедура заключается в прибавлении формально неразрешимого в какой-либо богатой системе высказывания в качестве независимой аксиомы. Напомним, что истинность геделевского высказывания не может быть проверена в рамках существующей аксиоматической системы. Эта система может, по Геделю, все время таким образом пополняться. При этом не может быть создана универсальная система аксиом, не нуждающаяся в дополнении. Это следует из теорем Геделя по следствию, называемому теоремой Геделя о неполноте [8]. Открытие, по А. Пуанкаре, совершается по принципу аналогии и далее опирается на аксиому математической индукции. При этом каждая последующая теорема есть следствие предыдущей. В заключение остается повторить все эти действия в обратном порядке. Теперь, если учесть, что в геделевской процедуре включение новой аксиомы обосновывается личностными суждениями, поскольку новая аксиома независима по отношению к уже имеющимся, можно делать вывод о правомерности построенной аналогии [4].

Другим фактором, существенно влияющим на формирование стиля математического мышления конкретного математика, можно назвать неявное знание. Это то знание, которым мы пользуемся неосознанно. Можно принять, что оно представляет собой результат неосознанного умозаключения. Вследствие неосознаваемости этого знания математик вне зависимости от стиля мышления не может включить его в доказательство, хотя оно незримо там присутствует в качестве скрытых лемм. Например, доказательство того, что всякое замыкание делит плоскость в точности на два множества точек, и что переход из одного множества в другое обязательно связан с пересечением границы между ними, даже в самом упрощенном виде не предусмотрен в аксиомах Эвклида, хотя эта операция там встречается буквально сплошь и рядом. Чтобы убедиться в этом, достаточно открыть любой учебник по геометрии. Знакомство с теорией множеств, где означенное утверждение доказывается, в школьной программе не предусмотрено [9].

Далее, в доказательстве методом от противного неявно используется закон исключенного третьего и закон противоречия. Это вообще относится ко всем законам логики. До известных пределов это не так уж важно, однако в конце концов были обнаружены парадоксы математики, которые впоследствии пытался преодолеть интуиционизм, предлагая свою логику, в которой, в частности, нет места закону исключенного третьего. Заметим, что такова особенность неявного знания вообще - до известного момента его не замечают, а как только оно становится знанием явным, оказывается, что его обоснование проблематично.

Вообще все неявное знание, присущее отдельной личности, многослойно и неоднородно. В целом оно опирается на так называемый комплекс неосознанных ощущений, определяющийся психологией личного восприятия. Поэтому неявное знание личностно, то есть целиком связанно с индивидуально-психологическими особенностями личности.